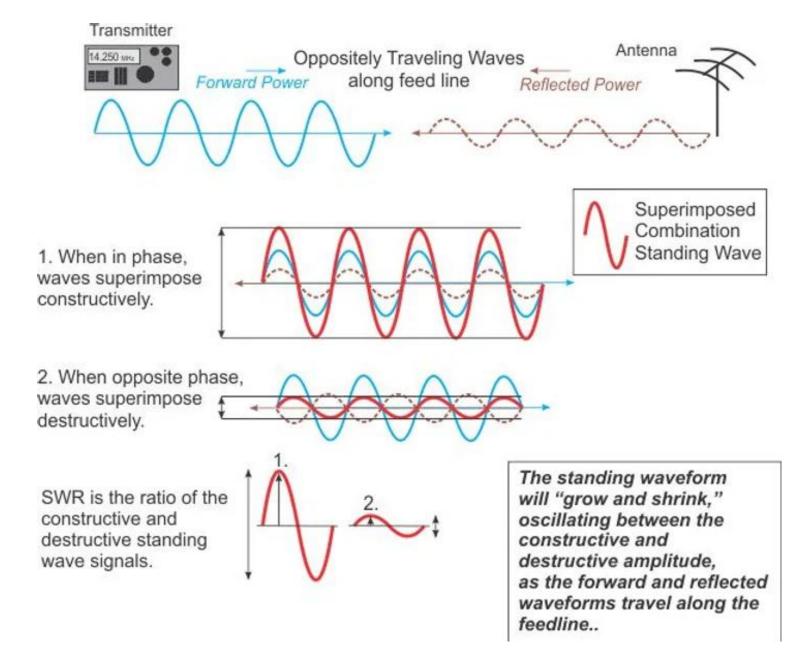
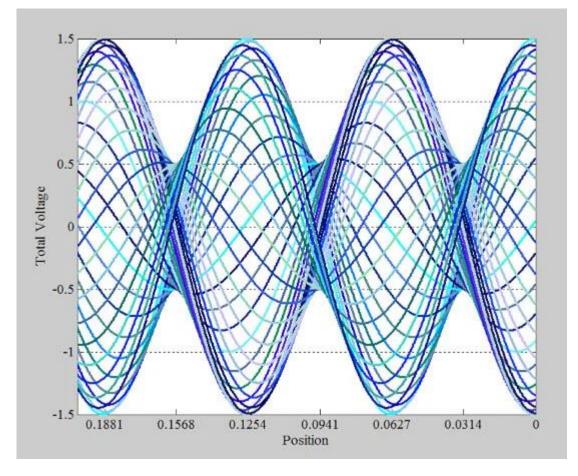
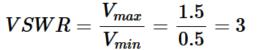

Standing Wave Ratio - SWR What it is.... What it isn't.


Tech Net #15 2/5/25

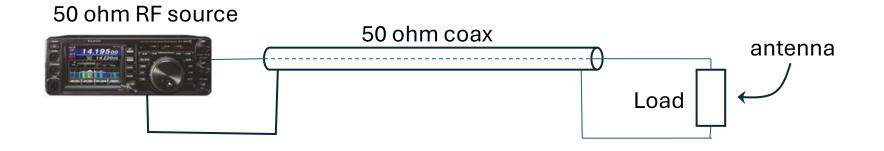
Jim Thomas AI5EG somewhere near Harwood, TX


"Your ham ticket is a license to learn." - Bill #1



• We discuss usefulness (or not) of SWR to achieve this goal

RF voltage waveforms with 3:1 SWR



https://www.allaboutcircuits.com/technical-articles/radio-frequency-design-basics-voltage-standing-wave-ratio-return-loss-and-mismatch-loss/

What is SWR?... really

Psst...good to know this stuff for your general or extra class license exam

• Standing waves occur in the coax when there is an "impedance" mismatch" between source, coax and antenna.

- Getting near to 1:1 SWR is *obsessively pursued* by us hams!
- Widely considered the ultimate good
- 50 ohm resistive load will give 1:1 SWR all power into the antenna
- A dipole antenna is typically 72 ohms \rightarrow SWR 1.44:1
- A vertical antenna is typically 36 ohms \rightarrow SWR 1.38:1
- At any frequency, a dummy load is typically 50 ohms \rightarrow SWR 1:1

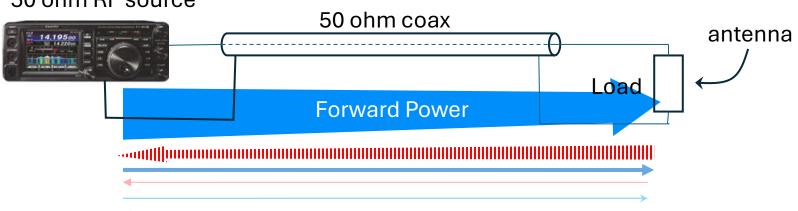
Questions about: What is SWR?

AI5EG

History

- Prior to the WWII, most hams used *ladder line* to feed antennas. Some still do.
 - Ladder line has *very* low loss. Mismatch & SWR was not a big concern.
 - Unwieldy compared to coax
- SWR indicators appeared after WWII with the invention and prevalence of war surplus coax feedline for amateur use.
- Today there are many tools to measure SWR
 - SWR meter in you rig
 - Stand alone SWR meters
 - Rig Expert
 - Nano NVA
 - etc

Ladder line


SWR Misconceptions

- "I'm not getting out because my SWR is 2.5 to 1"
- "There's too much power coming back and not enough getting into the antenna"
- "I have 2:1 SWR. Only half of my power is getting out my antenna!"
- "Subtracting reflected power from transmitted power to determine usable power to the antenna"
- "If I feed the coax with that much SWR, the reflected power flowing back into my transceiver will burn it up"*
- "I don't want my coax to radiate"
- "An antenna SWR of 1.1:1 will work better than an antenna with 2.5:1 SWR"

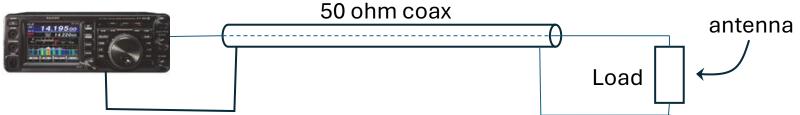
To measure and compare antenna system performance, *SWR is not the answer*.

Well, what is SWR all about then? When SWR is higher than 1:1....

- Some power is reflected from the antenna connection back toward to your transmitter
- then *re-reflected back* from transmitter toward the antenna.
- The <u>only</u> power that is lost in this round trip is the amount dissipated because of coax attenuation (a resistive loss).

50 ohm RF source

Well, what is SWR all about then? When SWR is higher than 1:1....


- SWR needs to be reasonable.
- High SWR will produce higher voltages on the feedline and your transmitter output stage.
- Modern rigs will reduce drive to protect output transistors from higher voltages that <u>may</u> exceed transistor ratings under <u>high</u> SWR conditions.
 - Designed to expect a reasonable amount of power goes into the antenna
 - Reasonable SWR will make your transmitter 'happy' so that it doesn't reduce drive.
 - A tuner at rig will make your transmitter happy but *doesn't change SWR in the coax* to the antenna, or the losses in the coax.

How does SWR affect power to my antenna?

- Higher SWR will certainly increase loss in your coax due to attenuation (resistive loss) of the reflected waves, but not as much as you might think.
- the difference in *power* transferred through *any* coaxial line with an SWR of 2:1 compared to having a perfectly matched 1:1 termination is *imperceptible**.

* At 2:1 vs 1:1 SWR, the additional <u>loss due to reflected power</u> is less than human ears can distinguish (~1dB).

50 ohm RF source

Final Thoughts

- SWR need to be reasonable
- SWR measures the *impedance matching* of radio, coax and antenna.
- To measure and compare antenna system performance, comparing SWR is not the answer.
- Low SWR is a good thing, but in most cases efforts to obtain low SWR of 1.1, 1.2 or even 1.5:1 we go far past the diminishing return point for efficient power transfer.
- Low SWR doesn't mean your antenna is an efficient radiator
- Coax is the most important part of your antenna system
- Don't cheap out on coax (or connectors)

End of on-air portion Questions? Discussions...

AI5EG

How does SWR affect power to my antenna?

Examples (assuming *quality* coax.... Amazon? ...not so much)

100ft RG8x coax: Power losses for 2:1 SWR measured at the antenna*

Frequency	<mark>RG8x</mark> SWR 1:1 Coax loss	Additional loss at 2:1 SWR*	Total loss at 2:1 SWR*	SWR reading at rig
5 Mhz	0.65 dB	0.13 dB	0.77 dB	1.8:1
30 Mhz	1.5 dB	0.22 dB	1.7 dB	1.6:1
150 Mhz	3.8 dB	0.39 dB	4.2 dB	1.3:1
450 MhZ	8.6 dB	0.50 dB	9.1 dB	1.1:1

- Added loss due to 2:1 SWR is below difference humans can detect.
- Note: Data table is for 100ft of RG8x good HF coax
 - Loss is proportional to length.
 - Keep feedlines short if possible
- For VHF & UHF: RG8x not suitable for LONG runs
 - Short runs like in a mobile setup or antenna near the shack should be fine.
 - Use better coax for longer runs at VHF & UHF
- Ironically, higher loss in coax makes SWR at the rig look better.

100 ft of RG58 – cheap, but ??

Frequency	RG58 SWR 1:1 Coax loss	Additional loss at 2:1 SWR*	Total loss at 2:1 SWR*	Power to the antenna
5 Mhz	1.5 dB	0.25 dB	1.8 dB	66%
30 Mhz	2.8 dB	0.33 dB	3.1 dB	49%
150 Mhz	6.2 dB	0.43 dB	6.6 dB	21%
450 MhZ	10.6 dB	0.50 dB	11.1 dB	8%

100 ft of LMR400 example – good stuff

Frequency	LMR400 SWR 1:1 Coax loss	Additional loss at 2:1 SWR*	Total loss at 2:1 SWR*	SWR reading at rig
5 Mhz	0.2 dB	< 0.1 dB	.2 dB	~ 2:1
30 Mhz	0.7 dB	0.12 dB	.8 dB	~ 1.9:1
150 Mhz	1.5 dB	0.25 dB	1.8 dB	1.7:1
450 MhZ	2.7 dB	0.32 dB	3.0 dB	1.5:1

* SWR measured at the antenna

SWR and coax attenuation

- Hams operate over a band of frequencies.
 - Reasonable SWR to the transceiver, with a tuner if needed.
 - High quality low-loss coax at the frequency bands used
 - High quality coax connectors.
- Lowest possible SWR at the antenna, is a worthy goal for
 - Fixed frequency use i.e. repeaters
 - Narrow ham bands like 30m: 10.100-10.150 Mhz
- At VHF and more so at UHF feedline losses become critical.
 - Good match at the antenna end and super low loss coax
 - Hardline for repeaters or antennas up tall towers
 - Short runs and/or high-performance low loss coax for home stations
 - Short runs for mobile stations.

References and further information

- Understanding SWR by Example K5DVW (ARRL publication) "If you only read one article about SWR, I recommend this one" – AI5EG https://www.arrl.org/files/file/Technology/tis/info/pdf/q1106037.pdf
- The Truth about SWR: Debunking the Myths and Misunderstandings by DXengineering -- easy to follow video

https://youtu.be/L1_NLEpsW90?si=BQplQ5W90Ue6muxt

• Ham Radio School

https://www.hamradioschool.com/post/swr-perfect-match-t7c04

- Good SWR animations, a little more theory https://youtu.be/BSa051lWB_c?si=SwrP9ibhd-AeZ8qi
- ARRL Antenna Handbook Chapter 23.1
- Reflections III Chapter 1: Too Low an SWR Can Kill You http://www.w4wb.com/Reflections_III.pdf
- DX Engineering Coax Reference Chart

https://static.dxengineering.com/global/images/chartsguides/d/dxe-11u_vq.pdf?

Food for deeper thoughts..... Why some old timers like ladder line? A ladder line story as told by AI5EG

Data taken from "Understanding SWR by Example K5DVW – ARRL publication"

- Your wise but elderly Elmer uses 300ft of 450ohm ladder line to feed his 10meter antenna that has an impedance of 4500 ohms
- A 4500/450 = 10:1 SWR on the line! Yikes!
- 300ft of 450ohm ladder line has a line loss of 0.5dB
- At 10:1, the added line loss due to the mis-match = 0.9dB
- Total loss = 1.4dB not bad!
- Tossed a balanced line tuner on his radio and worked some DX
- You feed <u>same antenna</u> with only <u>40 ft of very high-quality 50ohm coax</u> (0.25db loss), using a tuner to get 1:1 at the radio.
 Total mismatch loss = 12dB = only 6% of your power is radiated.
 - Your Elmer smiles & advises you to put a matching network at the antenna end.
 - You ask, "What's a matching network?"

Some terms... the jargon

Impedance = resistance + reactance

- All measured in ohms. (The math is literally complex: real and imaginary #s)
- *Only resistance* can dissipate power. Value is constant with frequency.
- Pure *reactance*, (ideal inductors & capacitors), dissipate no power, only *store energy* temporarily. Value changes with frequency.

decibel(dB) - a logarithmic scale

dB is used in ham radio to compare/describe signal & power levels.

+1dB = usually too subtle increase for human ear to detect

 $+3dB = 2x power = \frac{1}{2}S unit$

+6db = 4x power = 1 S unit in received signal strength

+10db = ten times power +20db = hundred times power

dBi = in antennas, is dB gain over theoretical isotropic antenna

dBd = power gain relative to a dipole antenna

dBm = power relative to 1 mW of power

The math: dB = 10 times the common logarithm of the power ratio 19